12 research outputs found

    Communication-aware Drone Delivery Problem

    Get PDF
    The drone delivery problem (DDP) has been introduced to include aerial vehicles in last-mile delivery operations to increase efficiency. However, the existing studies have not incorporated the communication quality requirements of such a delivery operation. This study introduces the communication-aware DDP (C-DDP), which incorporates handover and outage constraints into the conventional multi-depot multi-trip green vehicle routing problem with time windows. In particular, any trip of a drone to deliver a customer package must require less than a certain number of handover operations and cannot exceed a predefined outage duration threshold. A mixed integer programming (MIP) model is developed to minimize the total flight distance while satisfying communication constraints. We present a genetic algorithm (GA) that can solve large instances and compare its performance with an off-the-shelf MIP solver. Computational study shows that the GA and MIP solver performances are equivalent to solving smaller instances. We also compare the GA performance against another evolutionary algorithm, particle swarm optimization (PSO), for larger instances and find that the GA outperforms the PSO with slightly longer CPU times. The results indicate that ignoring the communication constraints would cause significant operational disruption risk and this risk can be easily mitigated with a slight sacrifice from flight distances by incorporating the proposed communication constraints. In particular, the communication performance can be improved by up to 28.9% when the flight distance is increased by 19.1% at most on average.</p

    Operational Research: Methods and Applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order

    Communication-aware Drone Delivery Problem

    Get PDF
    The drone delivery problem (DDP) has been introduced to include aerial vehicles in last-mile delivery operations to increase efficiency. However, the existing studies have not incorporated the communication quality requirements of such a delivery operation. This study introduces the communication-aware DDP (C-DDP), which incorporates handover and outage constraints into the conventional multi-depot multi-trip green vehicle routing problem with time windows. In particular, any trip of a drone to deliver a customer package must require less than a certain number of handover operations and cannot exceed a predefined outage duration threshold. A mixed integer programming (MIP) model is developed to minimize the total flight distance while satisfying communication constraints. We present a genetic algorithm (GA) that can solve large instances and compare its performance with an off-the-shelf MIP solver. Computational study shows that the GA and MIP solver performances are equivalent to solving smaller instances. We also compare the GA performance against another evolutionary algorithm, particle swarm optimization (PSO), for larger instances and find that the GA outperforms the PSO with slightly longer CPU times. The results indicate that ignoring the communication constraints would cause significant operational disruption risk and this risk can be easily mitigated with a slight sacrifice from flight distances by incorporating the proposed communication constraints. In particular, the communication performance can be improved by up to 28.9% when the flight distance is increased by 19.1% at most on average.</p

    Backhaul-Aware Optimization of UAV Base Station Location and Bandwidth Allocation for Profit Maximization

    No full text
    Unmanned Aerial Vehicle Base Stations (UAV-BSs) are envisioned to be an integral component of the next generation Wireless Communications Networks (WCNs) with a potential to create opportunities for enhancing the capacity of the network by dynamically moving the supply towards the demand while facilitating the services that cannot be provided via other means efficiently. A significant drawback of the state-of-the-art have been designing a WCN in which the service-oriented performance measures (e.g., throughput) are optimized without considering different relevant decisions such as determining the location and allocating the resources, jointly. In this study, we address the UAV-BS location and bandwidth allocation problems together to optimize the total network profit. In particular, a Mixed-Integer Non-Linear Programming (MINLP) formulation is developed, in which the location of a single UAV-BS and bandwidth allocations to users are jointly determined. The objective is to maximize the total profit without exceeding the backhaul and access capacities. The profit gained from a specific user is assumed to be a piecewise-linear function of the provided data rate level, where higher data rate levels would yield higher profit. Due to high complexity of the MINLP, we propose an efficient heuristic algorithm with lower computational complexity. We show that, when the UAV-BS location is determined, the resource allocation problem can be reduced to a Multidimensional Binary Knapsack Problem (MBKP), which can be solved in pseudo-polynomial time. To exploit this structure, the optimal bandwidth allocations are determined by solving several MBKPs in a search algorithm. We test the performance of our algorithm with two heuristics and with the MINLP model solved by a commercial solver. Our numerical results show that the proposed algorithm outperforms the alternative solution approaches and would be a promising tool to improve the total network profit

    Operational research : methods and applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order

    Operational Research: methods and applications

    No full text
    Throughout its history, Operational Research has evolved to include methods, models and algorithms that have been applied to a wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first summarises the up-to-date knowledge and provides an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion and used as a point of reference by a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order. The authors dedicate this paper to the 2023 Turkey/Syria earthquake victims. We sincerely hope that advances in OR will play a role towards minimising the pain and suffering caused by this and future catastrophes
    corecore